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Abstract. We have studied a neutrally-stratified flow over two-dimensional hills using a two- 
dimensional, non-hydrostatic version of the Regional Atmospheric Modeling System (RAMS). We 
have implemented three different turbulence closure models: the standard E - e  model, an Algebraic 
Reynolds Stress Model (ARSM) and a new E - e - ~W model. Model predictions for the mean 
and turbulence flows using different closure schemes are compared with the data of a wind tunnel 
experiment containing isolated two-dimensional hills of varying slope. From the comparison, it is 
concluded that all three models predict the mean flow velocities equally well while only the new 
E - e - uw closure model accurately predicts the turbulence data statistics. 

1. Introduction 

The determination of the turbulent wind field over complex terrain in the Atmo- 
spheric Boundary Layer (ABL) has been a topic of numerous past studies. Due 
to the mathematical difficulties involved in modelling the flow structure, the 
mean flow either has been assumed to be a simplified type of flow (e.g., poten- 
tial flow) or has been obtained by solving linearized equations of motion with 
crude assumptions about turbulence. Inevitably, the underlying assumptions of 
these models limited their applicability to gentle relief. Indeed, these models fail 
to reproduce certain important features of the complicated flow structure over 
complex terrain, especially when the terrain slope is moderate or steep. Conse- 
quently, it is now recognized that in order to understand how irregularities of the 
ground surface distort the mean and turbulent structure of the incident flow, and 
thus obtain a complete picture of the flow structure, it is necessary to solve a 
full set of fluid dynamics equations using finite-difference or more sophisticated 
numerical methods. 

It has been shown in many studies that in steady-state, neutrally-stratified ABL 
flow over topography, the mean velocity changes are relatively insensitive to the 
turbulence closure scheme (see Hunt and Simpson, 1982; Taylor et al., 1987). 
On the other hand, the characteristics of the turbulence depend very sensitively 
on the closure scheme adopted (Taylor et al., 1987). Simple schemes, such as 
the mixing-length model, which are essentially local in nature, are adequate only 
if there is a near equilibrium between local production and dissipation rates of 
turbulent kinetic energy. Because of the extreme sensitivity of the turbulent field 
to the varying pressure gradients caused by the terrain, these models are not 
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applicable to the case of complex terrain. In fact, observations of turbulence 
structure over hills are poorly reproduced by mixing-length models (Bradley, 
1980; Britter et al., 1981; Mason and King, 1985). In general, for complex terrain, 
non-equilibrium effects become significant, and thus a realistic description of the 
turbulence structure requires considerably more sophisticated closures (Zeman 
and Jensen, 1987). 

Several years of experimental and theoretical work have helped to elucidate 
some basic features of the turbulence dynamics concerning neutrally-stratified 
boundary-layer flow over a hill. In brief, there are two fundamental time scales: 
the first is the "time of flight" ta, which is the travel time for an eddy starting 
upstream to be advected along a streamline: the second is the turbulence time 
scale tz, which is the time taken for an eddy to decorrelate or turnover. The 
changes in the structure of turbulence over a hill depend on the relative mag- 
nitude of these two scales. In the outer region, defined by td <<_ h, the already 
complex upstream boundary-layer turbulence is subject to rapid distortion. In 
rapid distortion theory, it is assumed that the turbulent eddies are distorted by 
the mean flow so rapidly that the turbulence is not significantly modified by the 
change of strain rate (i.e., by the production terms). Consequently, in the outer 
region, the change in turbulence depends on the history of the mean flow and 
not on the local velocity gradient. In a thin, inner region adjacent to the sur- 
face, defined by td >_ h, the eddy-eddy interactions are more important than the 
straining by the distorted mean flow, and thus the flow can be expected to be in 
local equilibrium with the surface. In the intermediate region, where ~d ~ h, it is 
clear that the changes in the turbulence are diverse and a high-order turbulence 
closure model is needed to allow a match between the inner and outer regions. 

It is known that the occurrence of flow separation in the lee of hills some- 
times gives rise to a reversed flow and high turbulence intensities (Taylor et 
al., 1987). Turbulence modeling in the atmosphere has rarely included cases of 
abrupt topography where flow separation occurs. Computations of atmospheric 
flows have generally focused on large-scale phenomena in which recirculation 
zones were either absent or much smaller than the grid scale used in the calcu- 
lation. 

In addition, most atmospheric models are based on the hydrostatic approxima- 
tion. They cannot numerically treat recirculating flows because the acceleration of 
the vertical velocity is neglected. In this regard, atmospheric turbulence modeling 
has lagged behind engineering turbulence modeling. In engineering applications 
(Rodi, 1984), the K - e model (E - e in the meteorology literature) has predicted 
recirculating flows with an accuracy acceptable for most purposes. Rodi conclud- 
ed that the mixing-length hypothesis is not suitable for recirculating flows, and 
there is little evidence to support the belief that the length scale specifications 
used in one-equation models (where only the transport equation for turbulent 
kinetic energy is solved) are sufficiently universal for these flows. As to higher- 
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order turbulence closure models, there have been too few applications to allow 
an assessment of their performance in predicting recirculating flows. 

Concerning flow and turbulence in the ABL, two types of experiments exist, 
i.e., field experiments and wind tunnel experiments. Field experiments provide 
real-world data and, in this sense, are more reliable. However, generalization of 
field data is difficult because of the peculiarities of specific sites and meteorolog- 
ical conditions. Controlled variation of independent variables is also generally 
impossible. In contrast to field experiments, wind tunnel experiments can simu- 
late the flow field in the ABL with the possibility of controlling the governing 
parameters and reproducing the experimental conditions. In the past, though many 
wind tunnel experiments were performed, they had relatively little influence on 
the development of the theory mostly due to the difficulty of obtaining reliable 
measurements in the region very close to the surface. The lack of reliance on wind 
tunnel data is unfortunate because, provided that the limitations of wind tunnel 
modeling are properly accounted for, one can make good use of the valuable 
information contained in the data. 

Considering the many advantages of wind tunnel experiments over field exper- 
iments, we shall compare our theoretical models to the wind tunnel data with 
hills of idealized shape. In this way, we hope to obtain a basic understanding of 
the physical processes involved as well as of the principal governing parameters. 
Specifically, we adopt the EPA wind tunnel experiment RUSHIL (Khurshudyan e t  

a l . ,  1981), which provides complete mean and turbulent field data for a neutrally- 
stratified flow over isolated, two-dimensional hills of variable slope. 

In this study, we solve a full set of primitive non-hydrostatic dynamic equa- 
tions for mean flow quantities using a finite-difference method. The numerical 
code RAMS (the Regional Atmospheric Modeling System of Colorado State 
University) will be employed to perform the numerical calculations. To account 
for the complex terrain, we use the terrain-following coordinate system available 
in RAMS (Clark, 1977), in which an irregular lower boundary is transformed 
into a plane. 

From past experience, it seems that in hilly cases like the ones we study, a two- 
equation turbulence closure model would be the simplest model that promises 
success. Based on this consideration, we have implemented in RAMS the follow- 
ing turbulence models: (1) a standard E - e model which consists of prognostic 
equations for the turbulent kinetic energy E and the energy dissipation rate e; (2) 
an Algebraic Reynolds Stress Model (ARSM), which determines the Reynolds 
stresses through algebraic equations; (3) an E - c - u w  model, which has three 
prognostic equations for E,  e, and the vertical momentum flux ~--~. The per- 
formance of these different closures is evaluated through comparison of model 
results with wind tunnel data. 
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2. Description of the Model 

2.1 .  NON-HYDROSTATIC FLOW MODEL OVER COMPLEX TERRAIN 

A full set of primitive non-hydrostatic dynamic equations is solved in this study, 
Derivations of the momentum and pressure equations require the use of an equa- 
tion of state and the continuity equation. The equation of state for dry air is 

g = pO , (1) 
\Poo / 

where H is the Exner function, R is the gas constant for dry air, Po0 is the 
base state pressure at the ground, p is the density of dry air, O is the potential 
temperature, and cv is the specific heat at constant volume. 

The compressible continuity equation is 

0-7 + (Pu t )  = o, (2) 

where Uj is the velocity component in the xj direction. 
The momentum equations, derived from the Navier-Stokes equations with the 

aid of Equation (1), are 

- -  + CpOOW-- = 6i3g - 1 . . . .  (3) 
dt oxi ~ Oxj u~u3' 

where d/dt  = O/Ot+ UjO/Oxj is the substantial derivative, Cp is the specific heat 
at constant pressure, Ui and O are the ensemble means of Ui and O, rd is the 
deviation o f / 7  from the initial unperturbed state H0, and UiU j are the Reynolds 
stresses. The initial unperturbed state (represented by the pressure H0, potential 
temperature O0 and density P0) is the atmosphere at rest, where the hydrostatic 
equilibrium is assumed, i.e., O/7o/Oz = -9/(CpOO). 

The pressure equation is derived by taking the substantial derivative of Equa- 
tion (1) and using Equation (2) 

Or/ RHo 0 - -  
0--7 + evPoOo-- Ox-- a (PoOoUj) = f~. (4) 

The terms contained in f~ have little influence on the processes of physical 
interest (Klemp and Wilhelmson, 1978), and are therefore put equal to zero in 
our calculation. 

Finally, the equation for the potential temperature is 

dO 0 
dt Oxj uj O, (5) 
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where ujO are the turbulent heat fluxes. 
The salient feature of the above basic equations is the incorporation of a non- 

hydrostatic pressure Equation (4). In many atmospheric models, the pressure is 
calculated from a hydrostatic equation. The latter is valid only when the hori- 
zontal length scale of the phenomenon modeled is greater than the density-scaled 
height of the atmosphere. Under this condition, the vertical acceleration can be 
neglected and the vertical momentum equation reduces to the hydrostatic equa- 
tion (Pielke, 1984). In hill cases like the ones treated here, however, the varying 
pressure gradient causes horizontal structures whose scales are smaller than the 
density-scaled height. The hydrostatic assumption is no longer valid and thus 
a non-hydrostatic equation for the pressure calculation is required. Indeed, the 
vertical velocity field resulting from our numerical calculation clearly shows that 
the vertical acceleration cannot be neglected. 

In the presence of complex terrain with surface height zg(x ,  y )  and height of 
the computational domain s, Equations (3)-(5) are transformed into the terrain- 
following coordinate system (x, y, r/), which is related to the Cartesian coordi- 
nates (x, y, z) by (Clark, 1977) 

z - z g ( x , y )  
= s . (6) 

s - z g ( x , y )  

Specification of the function Zg(X, y)  will be made in 5.2 below. 

2.2. T H E  T U R B U L E N C E  CLOSURE SCHEMES 

2.2.1. The S tandard  E - e M o d e l  

In this scheme, the Reynolds stresses in Equation (3) and the heat fluxes in 
Equation (5) are computed from the eddy viscosity assumption: 

u i u j  = - u t  + XSij  , (7) \ Oxj  Oxi / .3 

ut O 0  
uiO - (8) 

crt O x  i ' 

where ut is the eddy viscosity and ~r t is the turbulent Prandtl number. Here, ut 

is supposed to be proportional to the turbulent velocity and length scales. In the 
hilly cases, due to the non-equilibrium effects and other complexities caused by 
the hill, ut can not be specified in a simple manner such as in the mixing-length 
theory, ut o( vlm, where �9 and lm a r e  a r m s  turbulent velocity and a mixing 
length. In a two-equation model, the turbulent kinetic energy E, characterizing 
the turbulent velocity scale, and a quantity related to the turbulent length scale are 
solved by transport equations. These equations account for advection, diffusion, 
production and dissipation of the turbulent velocity scale and length scale. Among 
different types of two-equation models that have been discussed in the literature, 
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namely, E - e, E - r,  E - w and E 1/2 - ~,  where ~- = 2 E / e  and a~ = e / E  
(since e ~ E3/2/1, where l is the dissipation length scale, all of these quantities 
are related to l), Lang and Shih (1991) have concluded that the E - e model is 
the most robust in the sense that it requires the least number of changes when 
considering different types of flows. The E ,  e model is not only very popular 
and successful in engineering studies, but it has also been applied to atmospheric 
flows with considerable success (Detering and Etling, 1985; Beljaars et al., 1987; 
Duynkerke, 1988). 

In the E - e model, vt is given by 

E2 
vt = c . - - ,  (9) 

e 

where eu is a constant. 
The transport equations for the turbulent kinetic energy E and dissipation rate 

e are 

dt - Oxj Oxj + P - e '  (10) 

de O ( v t O e l e  p 
dt - Oxj \ ~ - ~ z j  ] + -~(Cl~ - c2~e), (11) 

where ere, cry, cle and c2~ are constants, and P is the rate of production of turbulent 
kinetic energy given by 

O U i  
P = - u i u j - N  - - .  (t2) 

(Jxj 

In the above equations, the values of the constants (c~ = 0.09, Cl~ = 1.44, 
c2e = 1.92, ere = l, ~ = 1.13, at = 0.9) are taken from Launder and Spalding 
(1974). 

2.2.2. The Algebraic Reynolds Stress Model  
In order to allow for the different evolution of the various turbulent stresses 
(representing various velocity scales in complex flows) and to properly account 
for their transport, models were developed which employ transport equations for 
the individual Reynolds stresses ~iUj. After modeling the pressure-correlation 
and dissipation terms according to Rodi (1984), the transport equation for uiu j  
is written as 

d ~ i u j  
Diff(~--~-~) + Pij - c1-~ u iu j  - (SijE 

dt 

-~/ -~crij. (13) 
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On the right hand side of (13), the first term is the diffusion term, the second 
term Pij  = - ( u - - ~ O U j / O x l  + u--7-~OUi/Oxz) is the production term, the third 
and the fourth terms with constant coefficients el and ",/are modeled pressure- 
correlation terms, and the last term represents dissipation. 

A simplified form of the transport equations for ~ is the Algebraic Reynolds 
Stress Model (ARSM) proposed by Rodi (1984). In this model, the sum of the 
transport terms of u~uj in Equation (13), including the rate of change, advection 
and diffusion terms, is assumed to be proportional to that of E,  the proportionality 
factor being the ratio u - 7 ~ / E  (which is not a constant). One writes 

duiu j  

dt 
uiuj [ dE 1 D i f f ( ~ )  = --E--- - ~  - D i f f (E )  , (14) 

which on the basis of Equation (10) becomes 

d~iuj  

dt 
Diff(~--7-@-) = ~ ( P  - e). (t5) 

Substituting Equation (15) into Equation (13) gives the ARSM 

UiU j = E 
[_2 2 P (1 - "y) ( - ~  - ~6ij7- ) 
3 6ij + p c 1 + 7 - 1  

(16) 

In two-dimensional boundary-layer flows, calling U and u the components of 
the mean and turbulent velocities in the horizontal flow direction x, and W and 
w those in the vertical direction z, the shear stress u w  is usually the one that 
exerts significant direct influence on the development of the mean flow. In this 
case, if the further approximation U 2 = W 2 = (2 /3)E is used in the Pea term of 
Equation (16), one obtains an explicit expression for ~--~, 

= + (17) 
1+., / tP e 

where c] and T' are positive constants. Equation (17) turns out to be an eddy 
viscosity relationship with the eddy viscosity given by 

C] E 2 
ut - - -  (18) 

l + ^ t P  yT-  e 

which shows that ut is now a dynamical variable since it depends on the ratio 
P/e. 
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2.2.3. The E - e - uw Model 
As mentioned before, in two-dimensional boundary-layer flows, the shear stress 
u--~ is the most influential component of the Reynolds stress tensor. Thus, in this 
scheme, out of the full set of transpo~ equations for the Reynolds stresses, only 
those for E, e and uw are solved. The equations for E and r are the same as in 
the standard E - e model, while the equation for uw is 

d~-~dt - ozO ~2 -r Oz ] + Cr -~uw + c~2E + -~x ' (19) 

which is similar to the one derived by Hanjalic and Launder (1972). 
The remaining Reynolds stress components are stilt computed from Equation 

(7) as in the standard E - e model. 

3. The EPA Wind Tunnel Experiment RUSHIL 

The EPA wind tunnel experiment RUSHIL simulates a neutral atmospheric 
boundary layer with two-dimensional relief. The incoming flow (in the x direc- 
tion) is characterized by a logarithmic velocity profile 

g(z)=--u* In ( ~ )  (2o) 

with z0 = 0.157 x 10 -3 m, u.  = 0.178 m/s, and ~ = 0.4. This velocity profile 
reaches the free-stream velocity U ~  = 3.9 m/s at the height of 1 m. A two- 
dimensional model hill of analytical shape is placed across the incoming flow, 
spanning the width of the tunnel (in the y direction). Three different model hills 
with a maximum height h = 0.117 m and different slopes were used. Their aspect 
ratios a/h  (ratio of the half-width a to the height) were 8, 5 and 3, corresponding 
to maximum slope angles of 10 ~ 16 ~ and 26 ~ respectively. These aspect ratios 
will be used as hill identifiers: Hill 8, Hill 5 and Hill 3. 

Measurements of mean and turbulent velocity fields were taken upwind, over 
and downwind of each of the hills. Vertical profiles of the mean horizontal veloc- 
ity U(z), the angle of mean velocity to horizontal surface ~(z), the longitudinal 
and vertical turbulent intensities ~Tu(z) and crw(z), and the Reynolds shear stress 
u---~ were measured at 16 longitudinal locations from x /a  = - 2  to x /a  >_ 5, 
where x = 0 corresponds to the top of the hill. For reference purposes, all the 
measurements were also taken over the flat wind tunnel floor. 

The EPA wind tunnel data, as originally reported, show a high degree of 
scatter, making them unsuitable for practical use. Recently, however, this serious 
drawback has been overcome by a group of meteorologists (Trombetti et al., 
1991). They realized that the experimental data sets require proper analysis in 
order to minimize measurement errors and produce fields consistent with certain 
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dynamic requirements. Consequently, they have undertaken the task of smooth- 
ing the EPA data. Each vertical profile of the flow data has been smoothed by 
taking into account the errors of experimental measurements and forced to the 
appropriate surface values; then each profile has been interpolated at regularly 
spaced levels and presented graphically. 

4. Boundary Conditions and Initialization 

Because the ground surface is impermeable, the mean flow at the lowest level 
follows the surface contour. At the lower boundary, the similarity law for a 
constant-stress surface layer is assumed. For U, E and e, the lower boundary 
conditions are applied at some height zp within the surface layer 

U ( z p )  = ~ (21) 

E ( z p  : 7i~/2' 
C;z 

(22) 

3 %. 
e(Zp) = t~zp' (23) 

where zp is chosen as the half-grid level above the ground, u .  is the friction 
velocity and z0 the roughness length. The boundary conditions for E and e result 
from assuming that dissipation near the ground is balanced by the generation 
of turbulent kinetic energy. While this assumption may not agree well with the 
actual condition, it has been used extensively in other studies (Rodi, 1984), and 
is used here in the absence of better boundary conditions. For ~--~, the lower 
boundary condition is applied at z = 0 in the form 

2 (24 )  u w ( z  = O) = u , .  

Our simulation domain is set to 2 m height, which is far removed from 
the region affected by the hilly terrain (which is about 1 m in height). Thus, the 
influence of the upper boundary is minimized. A rigid lid is assumed at the upper 
boundary, where the vertical velocity is set to zero and the pressure is adjusted 
to account for the perturbation caused by the underlying terrain at that level and 
to compensate for the restrictive requirement on vertical velocity (Klemp and 
Wilhelmson, 1978; Pielke, 1984). 

The lateral boundaries are also located far from the hill region in order to 
minimize the influence of the boundaries. At the inflow boundary, variables are 
kept constant in time as 

i m 

U(z) =Uo(z),  (25) 
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E(z)  =E0(z),  (26) 

e(z) = co(z), (27) 

uw(z) = g-~(z),  (28) 

m 

where Uo(z), Eo(z), e0(z) and ~-~(z)  are the output profiles from the simula- 
tions carried out in flat terrain. While running the simulations in flat terrain, the 
simulation domain was set sufficiently large in the flow direction in order for the 
flow to develop and finally reach equilibrium. The equilibrium, :c-independent 
solutions are then used as input for the simulations in hilly terrain. At the outflow 
boundary, the gradient of U normal to the boundary is set equal to zero and the 
second-derivatives of the other variables in the direction normal to the boundary 
are also set equal to zero. 

All the prognostic variables are initialized horizontally homogeneously with 
the same profiles as used for the inflow lateral boundary conditions in Equations 
(25)-(28). 

5. Numerical Method 

5.1. THE COMPUTATIONAL GRID 

The model variables are defined on an Arakawa C staggered grid. In a two- 
dimensional case, the grid structure is shown in Figure 1 The vertical velocity 
W and the shear stress uw are staggered at half-grid points in the vertical with 
respect to the other dependent variables. The horizontal velocity U is staggered 
at half-grid points in the horizontal. 

To obtain high vertical resolution near the ground and low resolution at higher 
levels, our model has the smallest grid increment near the ground, with the grid 
mesh expanding upward. In this vertically stretched grid, a constant expansion 
ratio is kept between consecutive levels, which is equivalent to a logarithmic 
scaling commonly used in the ABL modeling. The expansion ratio, however, is 
set to a small value of 1.1 because large ratios would destroy the second,order 
accuracy of the vertical differencing in the model. In this way, the vertical grid 
size is set to 0.005 m at the lowest level and stretched to 0.1 m at the level of t 
m; above 1 m, the grid size remains constant as 0.1 m. 

An additional consideration in our simulations is that a small vertical grid size 
at the lowest level in a domain containing steeply-sloped topography requires 
high horizontal resolution for computational stability. From numerical analysis, 
a guideline here is that the terrain height difference between adjacent grid cells 
should ideally be less than the vertical grid size. Accordingly, the uniform hori- 
zontal grid sizes are chosen to be 0.05, 0.034 and 0.02 m in the simulations with 
Hills 8, 5 and 3, respectively. 
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Fig. 1. Schematic picture of the model grid. 

5.2. TERRAIN SPECIFICATION 
The shape of the hills installed in the EPA wind tunnel experiment RUSHIL is 
given by the following parametric equations (Khurshudyan et al., 1981) 

1 [ {2 + m2(a 2a2 ] _  ~2) x = ~  1+ , I x [ < a  

z = ~  V ~ - a  1 - ~ 2 + m 2 ( a 2 _ ~ 2 ) .  ' (29) 

where 

h ; ( h )  2 
m = - +  +1, 

a 

h is the height of the hill, a is the half width of the hill and ~ is an arbitrary 
parameter. 

The hills described by Equation (29) have forms that are symmetric about 
the z-axis and smoothly merge into a flat plane at the points x = i a .  When the 
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Fig. 2. Shapes of the model hills (to scale) in the EPA experiment RUSHIL. 

aspect ratio a/h equals 8, 5 and 3, Equation (29) gives the shape of Hills 8, 5 and 
3, respectively, as shown in Figure 2. The surface height Zg(Z) in Equation (6) 
(in the two-dimensional case) needed to define the terrain-following coordinate 
transformation is obtained from Equation (29) by a numerical scheme of finding 
roots of a nonlinear algebraic equation. 

5.3. F I N I T E - D I F F E R E N C E  SCHEME 

The equations of motion are compressible and thus permit the propagation of 
sound wave modes. The presence of sound waves can place severe restrictions 
on the time step in the numerical integration because of their high propagation 
speed. In order to make such a model economically feasible, a time-splitting inte- 
gration method (Klemp and Wilhelmson, 1978) is employed in conjunction with a 
leapfrog time-differencing scheme on the long time step and a forward-backward 
scheme on the small time step. To remove any tendencies of decoupling odd and 
even time steps in the leapfrog scheme, an Asselin time smoother (Asselin, 1972) 
is incorporated in the model. A second-order flux conservative form of advective 
schemes (Tremback et al., 1987) and second-order centered space differencing 
to all other derivatives are used in the integration of the prognostic equations. 

For computational stability of the model, it is necessary that the time step be 
set close to, but below the limiting value determined by the Courant-Friedrichs- 
Lewy (CFL) condition and other factors such as the maximum terrain slope. 
Through numerical experiments, the long time steps for the simulations of the 
Hills 8, 5 and 3 cases are determined to be 0.005, 0.002, and 0.00025 s, respec- 
tively. In each case, the short time steps are taken to be 5 times smaller than the 
long time steps. 

To attain steady-state values of the computed mean velocity components and 
turbulence quantities, the simulation must be run for at least 2 s of simulation 
time (or 40,000 short time steps in the time-splitting integration scheme) in the 
Hill 3 case. On an IBM RISC/6000-560 workstation, the simulation requires 
about 80 minutes of CPU time. The Hills 5 and 8 cases require 20 minutes and 6 
minutes of CPU time, respectively. Simulations using different turbulence models 
require about the same amount of CPU time. 
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6. Results of the Simulations 

F 

The vertical profiles of the horizontal wind component U(z), the vertical wind 
component W(z) and the Reynolds stress ~--~(z) computed for Hills 8, 5 and 3 
by using three different turbulence models (i.e., the standard E - e model, the 
ARSM and the E - e - ~-~ model) are compared with all available experimental 
profiles at 16 longitudinal locations. Figures 3-11 show these profiles at three 
representative longitudinal locations: :c = - a / 2  (upstream), x = 0 (hill top) and 
z = a (downstream). In the following, the results for U(z), W(z) and ~--~(z) will 
be discussed separately. 

6 . 1 .  R E S U L T S  FO R T H E  H O R I Z O N T A L  WIND C O M P O N E N T  U(z) 

In Figures 3, 6 and 9 the vertical profiles of the horizontal wind component U(z) 
obtained from the simulations with Hills 8, 5 and 3, respectively, are compared 
with the corresponding measurements. In general, the simulation results agree 
welt with the measurements. Also, the simulation results seem insensitive to the 
turbulence closure scheme, in agreement with the general assessment by previous 
studies. Here, the most distinctive feature of the flow pattern is shown on the 
lee side of Hill 3, where flow separation occurs with the mean flow reversed in 
the recirculation zone. The presence of this stationary separation zone poses the 
most difficult and challenging part in the numerical simulations. For example, 
it is known that the linear theory can not be used to deal with the recirculating 
flows, and the mixing-length hypothesis is not suitable for this situation either. 
In Figure 9c, the measured profile U(z) in the lee of Hill 3 is characterized by 
negative values near the ground. As shown in the same figure, the simulation 
results for U(z) obtained by using three different closure models are able to 
reproduce this reversed flow feature. Specifically, the results obtained using the 
E - e - uw model are quite satisfactory. 

6.2. R E S U L T S  FO R  T H E  V E R T I C A L  WIND C O M P O N E N T  W(z) 

In Figures 4, 7 and 10, the vertical profiles of the vertical velocity component 
W(z) obtained from the simulations with Hills 8, 5 and 3, respectively, are 
compared with the corresponding measurements. The simulation results generally 
agree well with the measurements. Nevertheless, near the top of the model domain 
at the lee side locations of Hills 8 and 5 (see Figures 4b and 7b), the simulation 
results do not quite agree with the measurements. In the simulations, the vertical 
velocity component W(z) naturally approaches zero at the height of 1 m without 
arbitrary constraints because the rigid lid upper boundary condition is enforced 
at the 2 m height. This trend seems physically reasonable, considering that at the 
1 m height, the flow should reach the freestream limit as shown by the horizontal 
velocity profiles U(z). The experimental results, on the other hand, give non-zero 
values for W(z) at the 1 m height on the lee sides of Hills 8 and 5. We are 
uncertain about the reason for the disagreement between the simulations and the 



414 R. YING ET AL. 

1.00 

NE~0.10 

0.01 
0 

(a) 

. . . . . . . . .  i . . . . . . . . .  I . . . . . . . . .  i . . . . . . .  i 

- / /  / / /  

/ /  

/ /  

/ 

/ / / ~  B- 
t . . . . . . . .  i l l "  . . . . . . . .  n ,  . . . . . . .  , 

1 2 3 

0 (m/s) 

1.00 

v•0.10 
N 

(b/ 
. . . . . . . . .  i . . . . . . . . .  i . ,  

/ 
/ 

. . . . . . . . .  i . . . . . . . .  [ i  . . . . . . . .  0.01 
1 2 3 4 

0 (~S) 

(c) 
1 . 0 0  . . . . . . . . .  , . . . . . . . . .  = . . . . . . . . .  ~ . . . . . . . .  

..~ 0.10 

�9 ". {9 {3- / / /  

0.01 ,, 1,., . . . . . . . .  L . . . . . . . . . . . . .  
0 1 2 3 4 

0 (m/s) 

Fig. 3. The vertical profiles of the horizontal mean velocity component U(z) over Hilt 8 at three 
longitudinal locations: (a) z = -a/2, (b) z = 0, (c) x = a. The solid line is from the experimental 
data for Hill 8; the dashed line is from the experimental  data for flat terrain; the squares are the 
simulation results with the standard E - e model;  the triangles are the simulation results with the 
ARSM;  the plus signs are the simulation results with the E - e - u w  model.  

measu remen t s .  We can only  specula te  that  some  u n k n o w n  fac tor  is p resen t  in the 
wind  tunnel  expe r imen t s  which  is not  p red ic ted  in the current  theoret ical  mode l .  

Ano the r  d i sag reemen t  in the case  o f  W(z) is found  near  the g round  at the 
top o f  Hill  3, as shown  in Figure  10b. Here ,  ra ther  large pos i t ive  va lues  o f  
W(z) are measured ,  f rom which  a large pos i t ive  va lue  for  W at g round  level  
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is inferred. The simulation, on the other hand, predicts smaller positive values 
for W(z) near the ground and a zero value for W at the surface. Large vertical 
velocities were also measured near the ground on the top of Black Mountain in a 
field experiment reported by Bradley (1980). In the presence of a prevailing NW 
wind, Black Mountain can be regarded as a two-dimensional hill with an aspect 
ratio similar to Hill 3. Bradley described the measured large vertical velocities 
as "somewhat surprising" but thought that they could possibly be explained in 
terms of the large-scale separation effects on the lee side. Regarding the same 
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phenomenon, Zeman and Jensen (1987) speculated that the iarge slope of the 
hill probably caused flow separation fairly near the summit. At any rate, our 
simulation fails to reproduce these large vertical velocities. Evidently, a deeper 
understanding of the physical processes that affect the Vertical velocity is still 
required. The real question about the measurements, however, is the unphysical, 
large positive value of W at ground level, because at the very top of a hill, the 
direction of the velocity at the ground should be horizontal in accordance with 
the surface contour. Possible sources of errors in the experimental data are the 



1.00 

~0.10  

0.01 

NUMERICAL SIMULATION OF FLOW DATA OVER TWO-DIMENSIONAL HILLS 417 

(a) 
. . . . . . . . .  i . . . . . . . . .  t . . . . . . . . .  i . . . . . .  i j;j 

,7- 
/ /111~ 

1 2 3 
~(m/s) 

1.00 

Ev 0.10 
N 

0.01 ' ' ' 
0 

(b) 
" .......... ' .............. /I" 

I III 

i ~I I 

iiii//1111 ~/..1 
.,.I . . . . . . . .  /.I . . . . . . . . . .  

1 2 3 4 
U(nvs) 

1.00 

E 0,10 

0.01 
0 

(c) 
. . . . . . . .  I . . . . . . . . .  I . . . . . . . . .  I . . . . . . .  i 

+ t, ~ "  / / /  

+ A D~ I III 

: /  ............ ,:i ............... -... 
1 2 3 4 

UCnVs) 
m 

Fig. 6. The vertical profiles of the horizontal mean velocity component U ( z )  over Hill 5 at three 
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data for Hill 5, the dashed line is from the experimental data for flat terrain; the squares are the 
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e x t r e m e  d i f f icu l ty  o f  ob t a in ing  r e l i ab l e  m e a s u r e m e n t s  in the  r eg ion  ve ry  c lose  to 

the  g r o u n d  in a w i n d  tunne l  or  some  f laws in the da ta  s m o o t h i n g  p rocess .  

F i n a r d i  e t  a l .  (1993)  have  r ecen t ly  used  two  m a s s - c o n s i s t e n t  m o d e l s  to s imu-  

late  the  p rof i l es  o f  the m e a n  v e l o c i t y  c o m p o n e n t s  U ( z )  and  W ( z )  in the EPA w i n d  

tunnel  e x p e r i m e n t s  R U S H I L .  C o m p a r i s o n  o f  the i r  resu l t s  wi th  ours  shows  that  
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the latter generally exhibit better agreement with experiments. Another advantage 
of our simulations over the mass-consistent models is that the latter require three 
or four input vertical profiles at different m locations from measurements whereas 
our simulation does not require any input profiles from measurements except the 
output equilibrium profiles from the simulation with flat terrain, Furthermore, 
our model can also incorporate higher-order turbulence closure schemes, which 
can not be achieved with either linearized or mass-consistent models. 



NUMERICAL SIMULATION OF FLOW DATA OVER TWO-DIMENSIONAL HILLS 419 

1 . 0 0  

~ 0 . 1 0  

0.01 
0.0 

(a) 
,~. . . . . . . .  I . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  

% ~ \ 

 O2%o \ ~ ~§ \ 

i "  ~ / 
I +AO / 

o +/ A /  
/ 

. . . . . . . . . . . . . . . . . . . . . . . . .  S . , / . . .  . . . . . . . . . . . .  
0.01 0.02 0.03 0.04 0.05 

- U W ( m = / s  = )  

1 , 0 0  

,,~ 0.10 

0.01 
-0.02 

A 
A 

A 
s 

LX 

(b) 

[] % \ \  

\ ' ,) 
[] a Yl 
0 ~ / +  I 

o Lx / +  I 
~ 

n + ~ /  tx 

, , , , , , , /  , \ ,  
0.00 0.02 0.04 

-UW(m=/s =) 

Fig. 8. 

(c) 
1 . 0 0  . . . .  ~ . . . .  , . . . .  

0.01 
0.00 0.05 0.10 0.15 

-UW(m2/s =) 

The same  as Figure  6 but  for the Reynolds  stress ~-~(z).  

6.3. RESULTS FOR THE REYNOLDS STRESS ~ ( Z )  

In Figures 5, 8 and 11, we compare the model results for the vertical profiles of 
the Reynolds stress ~ ( z )  obtained for Hills 8, 5 and 3 with the corresponding 
measurements. In general, the simulation results for ~ ( z )  do not agree with 
the measurements as well as in the case for the mean velocity. In addition, the 
simulated turbulence structure is sensitive to the turbulence closure models used 
as observed in many other studies (e.g. Taylor et  al. ,  1987; Beljaars et  al. ,  1987). 
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First, w e  discuss the results for ~ ( z )  at the hill tops as shown in Figures 5b, 
8b and l l b ,  as only  these results can be compared with the results from other 
mode l  studies. The standard E? - e mode l  fails to reproduce the experimental  data 
in all three cases: it predicts too small values  for - ~ - ~  especial ly  in Hills 5 and 
3, where it even  predicts negat ive  values  for - u w .  This type of  disagreement  
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regions, such as at the hill-top away from the surface, the gradients in Equation 
(7) become nearly zero or negative, resulting in very small or negative values 
for - u w  while the measured ~-~ retains more or less its upstream value. 

In the Hills 5 and 3 cases, what we observe is a countergradient momentum 
flux. Originally, the phenomenon of countergradient transport refers to a heat 
flux when heat is transported from low to high temperature regions (Deardorff, 
1966). Analogous to the countergradient heat flux, the turbulent momentum can 
be transported up and not down the mean velocity gradient as in the Hills 5 and 
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3 cases. Further theoretical explorations of the countergradient momentum flux 
can be carried out along the same lines as in the studies on the countergradient 
heat flux by Deardorff (1972) and Schumann (1987). Here, we only want to 
indicate that the primary importance of the advection process represented by the 
d/dt term in the transport Equations (13) for the turbulent momentum fluxes is 
responsible for a countergradient momentum flux. 

The ARSM is only partially successful in Predicting the shear stress ~ ( z )  
at hill tops. Figure 5b shows an improved result for -~-~(z)  at the top of Hill 
8. For Hills 5 and 3, however, the simulated results for ~-~(z) shown in Figures 
8b and 1 lb seem to be further away from the measured data than those obtained 
from the standard E - e model. Th.e drastically different performances of this 
type of ARSM with different hills are a clear indication of the limitation of the 
model. Since Equation (17) retains the form of a down-gradient eddy viscosity 
model with a positive (though variable) eddy viscosity, it cannot describe coun- 
tergradient momentum fluxes. Thus, we conclude that this type of ARSM can 
only apply to low hills where countergradient momentum fluxes are not present. 

Considering the complexity of the turbulent processes in flow over a hill, the 
results for ~ ( z )  on hill tops obtained by using the E - ~ - u w  closure model 
are quite satisfactory. It still appears that the simulations are more successful 
in the outer layer than in the inner layer, especially in the case of Hill 8. Less 
satisfactory results for u w  near the surface at the hill top are also reported in 
other studies using second-order turbulence closure (Zeman and Jensen, 1987; 
Beljaars e t  a l . ,  1987), for which these authors gave inconclusive explanations. We 
realize that the dominant mechanism in the inner region may not be sufficiently 
emphasized in such a formulation. Also, the lower boundary conditions used in 
the simulations are inconsistent with the observation that there is no constant- 
stress surface layer at the hill top. 

As to the results for ~ at the upstream locations shown in Figures 5a, 8a 
and 1 l a, the agreement between the simulations and measurements by all three 
turbulence models is only marginal. No clear improvement is found in either the 
ARSM or the E - ~ - u w  model. In general, the understanding of the mechanism 
that rules the upstream turbulence is still very rudimentary. Very few experimental 
or theoretical studies were aimed at the upstream turbulence structure. Zeman 
and Jensen (1987) predicted a shear stress u l u 3 ,  which is defined in the frame of 
reference aligned with the streamlines, along the windward side of the hill. Their 
model predictions can be explained solely by the streamline curvature effects; that 
is, the convex curvature reduces the stress and the concave curvature amplifies 
the stress. Since we have not included curvature modifications in the E -  c model 
and the ARSM, and the transport equation for u w  in our study is written in the 
Cartesian coordinate system unlike that for ulu3 in Zeman and Jensen's study 
(which is written in the streamline coordinate system), we are not able to single 
out the curvature effects in our study. Some comparison can be made under the 
assumption that u w  in our study should behave in a manner similar to that of 
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~lU 3 in Zeman and Jensen's study. It is shown that the EPA wind tunnel data 
for ~ do not quite follow the simple pattern predicted by the curvature effects 
alone. According to the experimental data, other physical processes must play a 
role. Again, only better understanding of the dynamical effects on the upstream 
side of the hill can lead to more successful modeling. 

Comparing with the experimental data, the simulation results for - ~  on the 
lee side of the hills shown in Figures 5c, 8c and 1 lc are generally overestimated. 
The results from the E - c - u w  model turn out to be very close to those from 
the standard E - e model. The most remarkable feature on the lee side of the 
hills is a very large mean shear (see Figures 5a, 8a and l!a), the effects of which 
are two-fold. First, it makes the production term in the transport equation for ~-C 
so overwhelmingly large that the transport equation for ~ becomes virtually 
an eddy viscosity relation like that in the standard E - e model. Second, in the 
E - c and E - c - u w  models, because - u w  is proportional to the mean shear, 
it yields a very large -~-C. 

In the Hills 5 and 3 cases, the results predicted by the ARSM for uw are 
substantially smaller than those predicted by the E - e and/~ - e - ~w models 
and seem close to the measured data. This is somewhat unexpected at first, but 
a closer look at the formulation of the ARSM shows that the variable eddy 
coefficient decreases with an increased mean shear and thus effectively offsets 
the large mean shear factor. 

On the other hand, measurements of the shear stress on the lee side of a 
hill are rare and we have not been able to find other measurements to make 
quantitative comparisons. Teunissen e t  a I .  (1987) compared the results from wind 
tunnel simulations of the flow over Askervein hill and the full-scale data from 
field measurements. They reported that the prototype data appear to display an 
increase in turbulence intensity in the wake significantly larger than do the wind 
tunnel measurements. We do not know if there is a similar problem with the EPA 
wind tunnel measurements. For one thing, the measured turbulence shear stress 
uw to the lee of the hills increased only moderately from its upstream value. 
We wonder if these measurements are reliable since it is generally believed that 
the turbulence intensity on the lee side of the hills is very high (cf. Taylor e t  

a l . ,  1987). At this point, we can only conclude that the large discrepancy in the 
results for the shear stress ~-C to the lee of hills either points to deficiencies in 
the turbulence models or errors in the measurements. 

7. Conclusions and Future Work 

Numerical simulations of turbulent flow over two-dimensional hills with different 
slope have been performed using a finite-difference method in a non-hydrostatic 
atmospheric model. Computations of the mean and turbulence flows with three 
different turbulence closure schemes, i.e., the standard E -- c model, the ARSM 
and the E -  e -  ttw model, have been compared with each other and with 
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measurements from the EPA wind tunnel experiment RUSHIL. Our findings can 
be summarized as follows: 

1. The simulated mean flow velocities agree well with the measurements. Specif- 
ically, the flow separation on the lee side of Hill 3 is well predicted by the 
simulations. Moreover, the results for the mean velocities are insensitive to 
the turbulence models used. 

2. The simulated results for the turbulent shear stress uw depend strongly on 
the turbulence models used. Generally, the E - e - uw model yields the best 
agreement with measurements. 

3. In predicting the shear stress uw on hill tops, the E - c - uw model works 
well; the standard E - c model fails and the ARSM is only partially suc- 
cessful. In the outer region, advection of the upstream turbulence dominates 
and only a transport equation for u w  can realistically model the advection 
effects. 

4. In predicting the shear stress on the upstream sides and lee sides of hills, there 
are discrepancies between model predictions and the measurements, which 
point to deficiencies either in the turbulence models or in the measurements. 
Further theoretical and experimental studies are needed to ascertain the tur- 
bulence dynamics at these locations. 

As to the possible directions of improving the model results, the first con- 
sideration concerns the constants appearing in the standard E - c model. The 
constants used in this study, taken from Launder and Spalding (1972), are based 
on extensive experimental data in engineering flows. When the E - c model was 
applied to the atmosphere, many authors (Detering and Etling, 1985; Raithby et  

al. ,  1987; Dawson et  al. ,  1987; Duynkerke, 1988) believed that these constants 
should be modified. As a result, many different sets of constants have been tried 
in the atmospheric studies. Among these constants, the most controversial is cu, 
which determines the lower boundary condition for E and should be consistent 
with the measured value of E, if available. Because of the lack of measurement 
data for E in the EPA experiment, we can not be sure about the proper value for 
cu, and therefore we did not change it. Hopefully, new experimental evidence 
will shed light on this matter. 

The second consideration concerns the constant coefficients in the transport 
equation for ~-~ (19), which determine the relative weight of each term. These 
constants are by no means uniquely defined. When the values of these constants 
change, different physical processes will be emphasized. For example, as stated 
in the Introduction, the mechanism dominating the turbulence dynamics in the 
inner layer is different than in the outer layer. It is conceivable that under proper 
specifications of these constants, the dominating physical process in the inner 
layer could be sufficiently emphasized to improve the results for ~-~ there. 

Other directions of research are: (i) to improve the modeling of the pressure- 
correlation and the third-order moment terms in the transport equations for the 
second-order moments, (ii) to solve the complete set of transport equations for 



426 R. YING ET AL. 

the  s e c o n d - o r d e r t u r b u l e n c e  quant i t ies ,  and  (iii)  to use  m o r e  accura te  n u m e r i c a l  

schemes .  T h e s e  s tudies  are n o w  in p rogress .  
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